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THE MINKOWSKI FUNCTIONAL AS A METRIC ON THE
SPACE OF PROBABILITY MEASURES

Tagaymurotov A. O. 1

Minkovskiy funksionali ehtimollik o‘lchovlari fazosidagi metrika
sifatida
Ehtimollik o‘lchovlari va idempotent ehtimollik o‘lchovlari
fazolari orasidagi bog‘lanish kategoriyalar nazariyasining muhim
masalalaridan biri hisoblanadi. Ushbu maqolada idempotent
ehtimollik o‘lchovlari fazosi ehtimollik o‘lchovlari fazosining
qutbi orqali tavsiflandi. Bundan tashqari Minkovskiy funksionali
ehtimollik o‘lchovlari fazosida metrika sifatida talqin etildi.
Kalit so‘zlar: Minkovskiy funksionali; ehtimollik o‘lchovi; qutb.

Функционал Минковского как метрика в пространстве веро-
ятностных мер
Соответствие между пространствами вероятностных мер и
идемпотентных вероятностных мер – один из актуальных во-
просов теории категорий. В работе дано описание простран-
ства идемпотентных вероятностных мер полюсом простран-
ства вероятностных мер. Затем функционал Минковского
интерпретируется как метрика на пространстве вероятност-
ных мер.
Ключевые слова: Функционал Минковского; вероятностная
мера; полюс.
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A subset C of Rn is said to be convex if (1− λ)x+ λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1. A subset K
of Rn is called a cone if it is closed under positive scalar multiplication, i. e. λx ∈ K when x ∈ K and λ > 0.
Such a set is a union of half-lines emanating from the origin. The origin itself may or may not be included. A
convex cone is a cone which is a convex set.

A correspondence between the spaces of probability measures and idempotent probability measures is an
actual question of the category theory [1], [2], [3], [5], [7]. We give a description of the space of idempotent
probability measures by the polar of the space of probability measures. Then the Minkowski functional
interpreted as a metric on the space of probability measures.

Let f be a function whose values are real or +∞, −∞ and whose domain is a subset S of Rn. The set
{(x, µ) : x ∈ S, µ ∈ R, µ ≥ f(x)} is called the epigraph of f and is denoted by epi f . We define f to be a convex
function on S if epi f is convex as a subset of Rn+1. A concave function on S is a function whose negative is
convex. An affine function on S is a function which is finite, convex and concave.

The effective domain of a convex function f on S, which we denote by dom f , is the projection on Rn of the
epigraph of f :
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dom f = {x|∃µ, (x, µ) ∈ epi f} = {x| f(x) < +∞}
A convex function f is said to be proper if its epigraph is non-empty and contains no vertical lines, i. e.

if f(x) < +∞ for at least one x and f(x) > −∞ for every x. Thus f is proper if and only if the convex set
C = dom f is non-empty and the restriction of f to C is finite. Put another way, a proper convex function on
Rn is a function obtained by taking a finite convex function f on a non-empty convex set C and then extending
it to all of Rn by setting f(x) = +∞ for x 6∈ C.

A function f on Rn is said to be positively homogeneous (of degree p) if for every x one has

f(λx) = λpf(x), 0 < λ < +∞.

Obiously, positive homogeneity is equivalent to the epigraph being a cone in Rn+1. An example of a positively
homogeneous convex function which is not simply a linear function is f(x) ≡ |x|.

It is well known (Theorem 4.7 in [4]) that a positively homogeneous function f from Rn to (−∞,+∞] is
convex if and only if f(x+ y) ≤ f(x) + f(y) for every x, y ∈ Rn+1.

Let f be a closed convex function on Rn. A function f∗ defined as

f∗(x∗) = sup
x
{〈x, x∗〉 − f(x)}

is said [4] to be the conjugate function of f .
The support function δ∗(·|C) convex set C in Rn is defined by

δ∗(x|C) = sup{〈x, y〉 | y ∈ C}

The indicator function [4] of a convex set C in Rn is δ(x|C) =

{
0, x ∈ C,
+∞, x 6∈ C.

For a non-empty convex set C the set

C0 = {x∗| δ∗(x∗|C)− 1 ≤ 0} = {x∗| ∀x ∈ C, 〈x, x∗〉 ≤ 1}

is called [4] the polar of C.
Let Rmax = R ∪ {−∞} equip with two new operations ⊕ and �, which are defined as u ⊕ v = max{u, v},

u� v = u+ v, u, v ∈ Rmax. Then 0 := −∞ is the zero of Rmax according to ⊕, and 1 := 0 is the unit of Rmax

according to �. It is known [6] that (Rmax, ⊕, �, 0, 1) is idempotent (u⊕ u = u for all u ∈ Rmax) semifield.
Let X be a compact Hausdorff space, C(X) the algebra of all continuous maps on X with respect to

usual algebraic operation. Define on C(X) operations ⊕ and � by ϕ⊕ ψ = max{ϕ, ψ} and ϕ� ψ = ϕ+ ψ, ϕ,
ψ ∈ C(X). The set of all probability measures on X (i. e. normed (µ(1X) = 1), additive (µ(ϕ+ψ) = µ(ϕ)+µ(ψ),
ϕ, ψ ∈ C(X)) and homogeneous (µ(λϕ) = λµ(ϕ), λ ∈ R, ϕ ∈ C(X)) functionals on C(X)) denotes by P (X)
[8], and the set of all idempotent probability measures on X (i. e. normed (µ(1X) = 1), max-plus-additive
(µ(ϕ⊕ ψ) = µ(ϕ)⊕ µ(ψ), ϕ, ψ ∈ C(X)) and max-plus-homogeneous (µ(λ� ϕ) = λ� µ(ϕ), λ ∈ R, ϕ ∈ C(X))
functionals on C(X)) by I(X) [6]. If X consists of n points then P (X) is a closed convex subset of Rn, and
I(X) is a closed max-plus-convex subset of Rn

max.
A set A is called max-plus-convex if the inclusion a, b ∈ A imply α � a ⊕ β � b ∈ A for every pair of α,

β ∈ Rmax such that α⊕ β = 1.
The following result establishes relation between the spaces P (X) and I(X).
Theorem 1. Let |X| = n. Then

I(X) = {(ξ∗1 , . . . , ξ∗n) ∈ P (X)0 − 1 :
n
⊕
i=1
ξ∗i = 1},

and

P (X) = {(ξ∗1 , . . . , ξ∗n) ∈ I(X)0 − 1 :
n

Σ
i=1
ξ∗i = 1}.

Note that a function k on Rn is called a gauge or Minkowski functional of a set C if k is a non-negative
positively homogeneous convex function such that k(0) = 0, i. e. if epi k is a convex cone in Rn+1 containing
the origin but not containing any vectors (x, µ) such that µ < 0. Gauges are thus the functions k such that

k(x) = γ(x|C) = inf{µ ≥ 0 : x ∈ µC}
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for some non-emtpy convex set C. Of course, C is not uniquely determined by k in general, although one always
has γ(·|C) = k for

C = {x : k(x) ≤ 1}.

If k is closed, the latter C is the unique closed convex set containing the origin such that γ(·|C) = k.
The polar of a gauge k is the function k0 defined by

k0(x∗) = inf{µ∗ ≥ 0 : 〈x, x∗〉 ≤ µ∗k(x), ∀x ∈ Rn}.

If k is finite everywhere and positive except at the origin, this formula can be written as

k0(x∗) = sup
x 6=0

〈x, x∗〉
k(x)

.

Note that, if k is the indicator function of a convex cone K, k0 is the same as the conjugate of k, the
indicator function of the polar convex cone K0.

A set C is called balanced if x ∈ C ⇒ αx ∈ C for |α| ≤ 1. If C ⊂ Rn is a nonempty, balanced, closed convex
set, then it is easily seen that

(1) k(x) ∈ Γ(Rn), where Γ(Rn) is set of proper, lower semicontinuous convex functions on Rn;

(2) Rn
C = {x ∈ Rn : k(x) < ∞} =

⋃
{αC : α ≥ 0}, the domain of k(x), is an algebraic subspace of Rn, and

k(x) is a seminorm on this subspace;

(3) If C is in addition compact, then k(x) is a norm on Rn
C

In [4] it was noted that if C is a closed convex set containing the origin, the gauge functions of C and the
support function of C are gauges polar to each other (Corollary 15.1.2).

The concept of a norm is natural to the study of certain metric structures and corresponding approximation
problems. By definition, a metric on Rn is a real-valued function ρ on Rn × Rn such that (M1) ρ(x, y) > 0
if x 6= y, and ρ(x, y) = 0 if x = y, ∀x, ∀y (nonnegativity); (M2) ρ(x, y) = ρ(y, x), ∀x, ∀y (symmetry); (M3)
ρ(x, z) ≤ ρ(x, y) + ρ(y, z), ∀x, ∀y, ∀z (triangle axiom). The quantity ρ(x, y) is interpreted as the distance
between x and y with respect to ρ.

Generally speaking, a metric on Rn need not have any relation with the algebraic structure of Rn. Two
properties which may naturally be demanded of a metric ρ, in order that it be compatible with vector addition
and scalar multiplication, are

(M4) ρ(x+ z, y + z) = ρ(x, y), ∀x, ∀y, ∀z,
(M5) ρ(x, (1− λ)x+ λy) = λρ(x, y), ∀x, ∀y and ∀λ ∈ [0, 1].
Property (M4) says that distances remain invariant under translation, and (M5) says that distances behave

linearly along line segments. A metric which has these two extra properties is called a Minkowski metric on Rn.
There is a one-to-one correspondence between Minkowski metrics and norms. If k is a norm, then

ρ(x, y) = k(x− y)

defines a Minkowski metric; moreover, each Minkowski metric is defined in this way by a uniquely determined
norm [4].

Theorem 2. Let X = {x1, . . . , xn+1} be a discrete space. The Minkowski metric on the space P (X) =
{(u1, . . . , un+1) : ui ≥ 0, i = 1, 2, . . . , n + 1, u1 + . . . + un+1 = 1} of probability measures on X defined by
a gauge k(u) = |u1| + . . . + |un+1|, u ∈ P (X), generates the pointwise convergence topology on P (X). If in
addition we require ρP (X)(u, v) = 1

2k(u− v) then diamP (X) = 1.

Proof. At first note that points of the view e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0) ,. . . , en+1 = (0, 0, . . . , 1) ∈
Rn+1 are extremal points of P (X). Then 1

2 (ei − ej) ∈ U(X), where U(X) = {(u1, . . . , un+1) : |u1| + . . . +
|un+1| ≤ 1} is the unit ball U(X) = {(u1, . . . , un+1) : |u1| + . . . + |un+1| ≤ 1}. That is why k(ei − ej) = 2,
i, j ∈ {1, 2, . . . , n+ 1}, i 6= j.

Now the metric
ρU(X)(u, v) = 1

2k(u− v)

on U(X) induces a metric ρP (X)(u, v) on P (X), such that diamP (X) = 1.



Bulletin of the Institute of Mathematics, 2021, Vol. 4, №4, ISSN-2181-9483 50

Theorem 2 is proved. 2

Let X be a compact metric space, ρX the metric on it. Fix a countable subset N of X. Let N be the set of

all finite subsets of N . Enumerate the elements of N : N1, N2, . . ., Nk, . . .. Then N =
∞⋃
k=1

Nk and
∞⋃
k=1

U(Nk) is

everywhere dense in U(X).

We attribute a sequence {µn} ⊂
∞⋃
k=1

U(Nk) to each measure µ ∈ U(X) such that µk ∈ U(Nk) and lim
k→∞

µk =

µ.
For every pair of measures µ, ν ∈ U(X) we put

ρU(X)(µ, ν) =
∞
Σ
i=1

1
2i ρU(Ni)(µi, νi). (1)

Theorem 3. Let (X, ρX) be a compact metric space. The function ρU(X) : U(X) × U(X) → R defined by
(1) is a metric on U(X) which generated the pointwise convergence topology on U(X).

Proof. Direct checking shows that ρU(X) is a metric on U(X). On the other hand ρU(X) generates the product
topology on a subspace U(X) of RC(X). But the product topology and the pointwise convergence topology on
U(X) coincide. Theorem 3 is proved. 2
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