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Minkovskiy funksionali ehtimollik o‘lchovlari fazosidagi metrika
sifatida

Ehtimollik oflchovlari va idempotent ehtimollik o‘lchovlari
fazolari orasidagi bog‘lanish kategoriyalar nazariyasining muhim
masalalaridan biri hisoblanadi. Ushbu maqolada idempotent
ehtimollik o‘lchovlari fazosi ehtimollik of‘lchovlari fazosining
qutbi orqali tavsiflandi. Bundan tashqari Minkovskiy funksionali
ehtimollik o‘lchovlari fazosida metrika sifatida talgin etildi.
Kalit so‘zlar: Minkovskiy funksionali; ehtimollik o‘lchovi; qutb.

OynkinoHas MIHKOBCKOIO KaK METPHKa B IIPOCTPAHCTBE BEPO-
SATHOCTHBIX MEP

CooTBercTBUE MEXK/y MPOCTPAHCTBAMHU BEPOATHOCTHBIX MED U
HJIEMIIOTEHTHBIX BEPOSITHOCTHBIX MeP — OJINH U3 aKTyaJIbHBIX BO-
MIPOCOB Teopum Kareropuii. B pabore maHO ommcanne TPOCTPaH-
CTBa UJIEMIIOTEHTHBIX BEPOATHOCTHBIX Mep IIOJIIOCOM IIPOCTPaH-
CTBa BEPOSTHOCTHBIX Mep. 3areM (yHKIMOHAI MUHKOBCKOTO
WHTEPHpPETUPYETCA KaK METPUKa Ha IIPOCTPAHCTBE BEPOATHOCT-
HBIX Mep.
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A subset C of R™ is said to be convex if (1 — A)x + Ay € C whenever z, y € C and 0 < A < 1. A subset K
of R™ is called a cone if it is closed under positive scalar multiplication, i. e. Ax € K when z € K and X\ > 0.
Such a set is a union of half-lines emanating from the origin. The origin itself may or may not be included. A
convex cone is a cone which is a convex set.

A correspondence between the spaces of probability measures and idempotent probability measures is an
actual question of the category theory [II, [2], [3], [5], [7]. We give a description of the space of idempotent
probability measures by the polar of the space of probability measures. Then the Minkowski functional
interpreted as a metric on the space of probability measures.

Let f be a function whose values are real or 400, —oo and whose domain is a subset S of R™. The set
{(z, n) : x €S, u € R, u> f(x)} is called the epigraph of f and is denoted by epi f. We define f to be a convex
function on S if epi f is convex as a subset of R"*!. A concave function on $ is a function whose negative is
convex. An affine function on S is a function which is finite, convex and concave.

The effective domain of a convex function f on S, which we denote by dom f, is the projection on R™ of the
epigraph of f:
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dom f = {z[3p, (z, n) € epi f} = {z| f(z) < +oo}

A convex function f is said to be proper if its epigraph is non-empty and contains no vertical lines, i. e.
if f(z) < 4oo for at least one = and f(z) > —oo for every x. Thus f is proper if and only if the convex set
C = dom f is non-empty and the restriction of f to C' is finite. Put another way, a proper convex function on
R™ is a function obtained by taking a finite convex function f on a non-empty convex set C' and then extending
it to all of R™ by setting f(z) = +oo for z & C.

A function f on R™ is said to be positively homogeneous (of degree p) if for every x one has

f(x) = M f(x), 0 <A< +o0.

Obiously, positive homogeneity is equivalent to the epigraph being a cone in R®*!. An example of a positively
homogeneous convex function which is not simply a linear function is f(x) = |z|.

It is well known (Theorem 4.7 in [4]) that a positively homogeneous function f from R"™ to (—oo,+00] is
convex if and only if f(x +y) < f(z) + f(y) for every x, y € R* 1.

Let f be a closed convex function on R™. A function f* defined as

F7(@7) = sup{(z, 27) — f(x)}

is said [4] to be the conjugate function of f.
The support function 6*(-| C) convex set C' in R™ is defined by

6" (2| C) = sup{(z, y) |y € C}

0 C
The indicator function [4] of a convex set C in R" is §(z|C) = i
+o00, z¢C.

For a non-empty convex set C' the set
CY = {2*| 6" (2*|C) —1 <0} = {z*|Vx € C, (x, z*) < 1}

is called [4] the polar of C.

Let Ryax = RU {—00} equip with two new operations @ and ®, which are defined as u ® v = max{u, v},
UOUV=u+v, u v E Ryax. Then 0 := —o0o is the zero of Ry,.x according to &, and 1 := 0 is the unit of Ry ax
according to ©®. It is known [6] that (Ryax, @, ©, 0, 1) is idempotent (u @ u = u for all u € Ryax) semifield.

Let X be a compact Hausdorfl space, C(X) the algebra of all continuous maps on X with respect to
usual algebraic operation. Define on C(X) operations @ and ® by ¢ @ ¢ = max{p, ¥} and p © ¢ = p + 1, ¢,
1 € C(X). The set of all probability measures on X (i. e. normed (u(1x) = 1), additive (u(o+v) = ulp)+u(y),
@, ¥ € C(X)) and homogeneous (p(Ap) = Au(p), A € R, ¢ € C(X)) functionals on C(X)) denotes by P(X)
[8], and the set of all idempotent probability measures on X (i. e. normed (u(lx) = 1), max-plus-additive
(1l @) = p(p) ® p(¥), ¢, 1 € C(X)) and max-plus-homogeneous (u(A© ) = AO u(p), A € R, p € C(X))
functionals on C(X)) by I(X) [6]. If X consists of n points then P(X) is a closed convex subset of R", and
I(X) is a closed max-plus-convex subset of R .

A set A is called max-plus-convex if the inclusion a, b € A imply a ©® a ® 8 © b € A for every pair of «,
B € Ryax such that a @ 5 =1.

The following result establishes relation between the spaces P(X) and I(X).

Theorem 1. Let |X| =n. Then

I(X)={(&, ... &) € P(X)° ~1: §& =1},
and

PX)={(&, ..., &) € I(X) —1: B¢& =1}

Note that a function k& on R™ is called a gauge or Minkowski functional of a set C' if k is a non-negative
positively homogeneous convex function such that k(0) = 0, i. e. if epik is a convex cone in R"*! containing
the origin but not containing any vectors (z, ut) such that p < 0. Gauges are thus the functions k such that

kE(x) =~v(z|C)=inf{u >0: z € unC}
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for some non-emtpy convex set C'. Of course, C' is not uniquely determined by k in general, although one always
has v(-|C) = k for
C={z: k(z) <1}

If k is closed, the latter C' is the unique closed convex set containing the origin such that v(:|C) = k.
The polar of a gauge k is the function k° defined by

E0(2z*) = inf{u* > 0: (x, 2*) < p*k(x), Vo € R"}.

If k is finite everywhere and positive except at the origin, this formula can be written as

0 I* —su <J}, J)*>

Note that, if k is the indicator function of a convex cone K, k° is the same as the conjugate of k, the
indicator function of the polar convex cone KP.

A set C is called balanced if x € C = ax € C for || < 1. If C C R™ is a nonempty, balanced, closed convex
set, then it is easily seen that

(1) k(x) € T(R™), where I'(R™) is set of proper, lower semicontinuous convex functions on R™;

(2) R ={z € R" : k(z) < oo} = U{aC : @ > 0}, the domain of k(z), is an algebraic subspace of R", and
k(z) is a seminorm on this subspace;

(3) If C is in addition compact, then k(z) is a norm on R

In [4] it was noted that if C' is a closed convex set containing the origin, the gauge functions of C' and the
support function of C are gauges polar to each other (Corollary 15.1.2).

The concept of a norm is natural to the study of certain metric structures and corresponding approximation
problems. By definition, a metric on R™ is a real-valued function p on R™ x R™ such that (M1) p(z, y) > 0
if x #y, and p(z, y) = 0 if = y, Ve, Vy (nonnegativity); (M2) p(x, y) = p(y, x), Vo, Vy (symmetry); (M3)
plz, 2) < p(z, y) + py, 2), Vo, Yy, Vz (triangle axiom). The quantity p(z, y) is interpreted as the distance
between x and y with respect to p.

Generally speaking, a metric on R™ need not have any relation with the algebraic structure of R™. Two
properties which may naturally be demanded of a metric p, in order that it be compatible with vector addition
and scalar multiplication, are

M4) p(z+ z,y+ 2) = p(z, y), YV, Vy, Yz,

(M5) p(z, (1 — Nz + Ay) = Ap(z, y), Va, Vy and VX € [0, 1].

Property (M4) says that distances remain invariant under translation, and (M5) says that distances behave
linearly along line segments. A metric which has these two extra properties is called a Minkowski metric on R".
There is a one-to-one correspondence between Minkowski metrics and norms. If k£ is a norm, then

p(z, y) =k(z —y)

defines a Minkowski metric; moreover, each Minkowski metric is defined in this way by a uniquely determined
norm [4].

Theorem 2. Let X = {x1, ..., xny1} be a discrete space. The Minkowski metric on the space P(X) =
{(u1y ooy Upg1) s u; >0,9=1,2,....n+1, ug+ ...+ upr1 = 1} of probability measures on X defined by
a gauge k(u) = |ui| + ... + |ups1|, v € P(X), generates the pointwise convergence topology on P(X). If in
addition we require pp(x)(u, v) = $k(u —v) then diam P(X) = 1.

Proof. At first note that points of the view e; = (1,0, ...,0),e2=(0,1,...,0) ,..., ep41 =(0,0,...,1) €
R are extremal points of P(X). Then 3(e; — e;) € U(X), where U(X) = {(u1, ..., un41) : |ur] +...+
|unt1]| < 1} is the unit ball U(X) = {(u1, ..., Uny1) © |ur] + ... + |ups1| < 1}. That is why k(e; —e;) = 2,

GLje{l 2 .. nt 1), i # .
Now the metric

pux)(u, v) = $k(u —v)
on U(X) induces a metric pp(x)(u, v) on P(X), such that diam P(X) = 1.
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Theorem 2 is proved. a
Let X be a compact metric space, px the metric on it. Fix a countable subset N of X. Let A/ be the set of

all finite subsets of N. Enumerate the elements of N: Ny, No, ..., Ni, .... Then N = |J Ny and | U(Ny) is
k=1 k=1
everywhere dense in U(X).
o0
We attribute a sequence {u,} C |J U(Ng) to each measure p € U(X) such that puy € U(Ny) and klirn i =
k=1 —»00

78
For every pair of measures u, v € U(X) we put

o0

pux) (s V) = EI%PU(N,;)(/M, Vi) (1)

Theorem 3. Let (X, px) be a compact metric space. The function pyxy: U(X) x U(X) — R defined by
is a metric on U(X) which generated the pointwise convergence topology on U(X).

Proof. Direct checking shows that py(x) is a metric on U(X). On the other hand py(x) generates the product

topology on a subspace U(X) of REX) . But the product topology and the pointwise convergence topology on
U(X) coincide. Theorem 3 is proved. O
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