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Abstract. The Banach-Steinhaus theorem is one of the basic principles of Functional Analysis. We prove a weakly additive,
order-preserving version of the Banach-Steinhaus theorem on spaces with order unit.

INTRODUCTION

Recently methods of Nonlinear Functional Analysis have more and more applications (see, for example [1, 2]). Many
applied results support on principles of Functional Analysis. In [3] it was proved a variant of the Hahn-Banach
theorem for the case of order-preserving functionals. Uniform boundedness principle for nonlinear operators on
cones of functions was consdered in [4]. Before in [5] it was studied open mapping theorem for spaces of weakly
additive homogeneous functionals on the space of continuous functions on a given compact Hausdorff space.

Recall the partially ordered vector space is [6] a couple (E,≤), where E is a vector space over the field of the real
numbers R, and ≤ is an order on E, satisfying the following conditions:

1) if x≤ y, then x+u≤ y+u for every x, y, u ∈ E;

2) if x≤ y, then λx≤ λy for all x, y ∈ E and λ ∈ R+.

If 1) and 2) carry out then they say that ≤ is a vector order. Endowment of a vector space E over R with a vector
order is equivalent to specifying the set E+ ⊂ E called a positive cone on E and having the following properties:

E++E+ ⊂ E+,

λE+ ⊂ E+, λ ≥ 0,
E+∩E− = 0,

where E− =−E+. Here the order ≤ and the positive cone E+ are related by

x≤ y⇔ y− x ∈ E+,

for all x, y ∈ E+. Elements E+ are called positive vectors.

Element 1 ∈ E+ is called (strong) order unit, if E =
n⋃

i=1
[−n1;n1]. This is equivalent to the fact that for any x ∈ E

there exists λ ∈R, λ > 0, that −λ1≤ x≤ λ1. In this case, the partially ordered vector space E is called a space with
order unit.

Let x ∈ E. A partially ordered vector space E is called an Archimedean space, if the inequality nx≤ 1 executed for
all positive integer n, implies that x≤ 0. In this case, a norm on E can be determined by the formula

‖x‖= inf{λ > 0 :−λ1≤ x≤ λ1}. (1)

This norm is called the order norm. A partially ordered vector space E is called a space with ordinal unit, if on E there
exists order unit and E is an Archimedean space. The topology on the E, generated by the norm (1), is called order
(vector) topology. For a subset X ⊂ E we denote by Int X the interior of X in the order topology.

We accept [3] the following convention

x < y⇔ y− x ∈ IntE+.

Note, that every space E with an order unit has infinitely many order units. More precisely, every interior element
of a positive cone E+ is an order unit.
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Let (E,≤), (F,≤) be partially ordered sets.
Definition 1 [3]. A map T : E → F is called order-preserving, if for elements x, y ∈ E the inequality x ≤ y on E

implies the inequality T (x)≤ T (y) on F .
Let E and F be a space with order unit, 1E is the order unit of the space E.
Definition 2 [3]. An operator T : E→ F we call weakly additive, if

T (x+λ1E) = T (x)+λT (1E)

holds for every x ∈ E, λ ∈ R.
From this definition it immediately follows that for any weakly additive operator T : E→ F we have

T (0E) = T (1E −1E) = T (1E)−T (1E) = 0F ,

i. e. T (0E) = 0F .
It is well known that the Banach-Steinhaus theorem is one of the basic principles of functional analysis. In this

work we prove an option of the Banach-Steinhaus theorem for weakly additive, order-preserving operators on spaces
with order unit.

MAIN PART

Monograph [7] is devoted to the automatic continuity of operators on Banach algebras. The following statement
shows that every weakly additive, order-preserving operator on spaces with order unit is automatically continuous.

Theorem 1. If E and F are spaces with order unit, then every weakly additive, order-preserving operator T : E→ F
is continuous.

Proof. We show, that an operator T continuous at zero 0E . First note the following. If T (1E) = 0F , then T (x) = 0F
for all x ∈ E, since the operator T is weakly additive and order-preserving. On the other side for any x ∈ E there exists
λ ∈R, λ > 0, such that−λ1E ≤ x≤ λ1E since 1E ∈ E+ is an order unit on E. Thus, T (E) = 0F . We will not consider
this case, and we will always assume that T (1E) 6= 0F . Under this assumption it is easy to see that ‖T (1E)‖ 6= 0.

Let

V (0F ,ε) = {y ∈ F :−ε1F < y < ε1F}

is some neighborhood of zero 0F on F , where ε > 0. Take a neighborhood U = U
(

0E ,
ε

‖T (1E )‖

)
of zero 0E on E.

Then for every vector x ∈U we have

− ε

‖ T (1E) ‖
1E < x <

ε

‖ T (1E) ‖
1E .

Since the operator T weakly additive and order-preserving, then

− ε

‖ T (1E) ‖
T (1E)< T (x)<

ε

‖ T (1E) ‖
T (1E).

These inequalities imply that ‖ T (x) ‖< ε , i. e. the operator T is continuous at zero. The following lemma completes
the proof of the Theorem.

Lemma 1. If weakly additive, order-preserving operator T : E → F is continuous at zero 0E , then it is continuous
everywhere on E.

Remark 1. Obviously, that every linear non-negative operator on spaces with order unit is a weakly additive, order-
preserving operator. The converse statement, generally speaking, incorrectly. But, nevertheless, such operators are
linear on a one-dimensional subspace {λ1E : λ ∈ R} ⊂ E. In this case, the image of the subspace {λ1E : λ ∈ R} on
map T is as easy to see, one-dimensional subspace {λT (1E) : λ ∈ R} ⊂ F . If 1E is an order unit on E, then T (1E)
is an order unit on T (E) ⊂ F (but on F has not to be). Therefore, without loss of generality, can be considered, that
T (E) = F and

T (1E) = 1F . (2)

Remark 2. From Theorem 1 and Remark 1 it follows that for any weakly additive, order-preserving operator
T : E→ F on spaces with order unit holds T (1E)< ∞.
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Recall the following concepts. Let X and Y be normed spaces. A subset A of the normed space X is called bounded,
if there exists R > 0, such that A can be placed in a ball {x ∈ X :‖ x ‖≤ R}. A map T : X → Y called bounded, if it
translates a bounded in X set onto a bounded in Y set. Obviously, that bounded the map T : X →Y it is equivalent the
bounding of a set {‖T (x)‖ : x ∈ X ,‖x‖ ≤ K} for every K > 0. In other words, for every bounded map T and for any
K > 0 one has sup{‖T (x)‖ : x ∈ X ,‖x‖ ≤ K}< ∞.

The following statement shows that every weakly additive, order-preserving operator on spaces with order unit is
automatic bounded.

Theorem 2. Any weakly additive, order-preserving operator T : E→F the spaces E and F with order unit bounded,
i. e. for every K > 0 we have

sup{‖T (x)‖ : x ∈ E,‖x‖ ≤ K}< ∞.

If Eq. (2) performed, then

sup{‖T (x)‖ : x ∈ E,‖x‖ ≤ 1}= 1.

The proof is trivial.
Remark 3. Since the operator T : E→ F is weakly additive and preserves the order, then on Theorem 2 it is enough

to consider 1 with any numbers K > 0. Really, let sup{‖T (x)‖ : x ∈ E,‖x‖ ≤ 1} < ∞ and K > 0 be any number. If
‖x‖ ≤ K, then we have −K1E ≤ x≤ K1E . Therefore,

−KT (1E)≤ T (x)≤ KT (1E).

Here ‖T (x)‖ ≤ K‖T (1E)‖. But due to Remark 2, we have T (1E)< ∞. Thus,

sup{‖T (x)‖ : x ∈ E,‖x‖ ≤ K}< ∞.

From Theorems 1, 2 and Remark 1 directly follows
Corollary 1. Any non-negative linear operator on the spaces with order unit is continuous (and bounded).
Let E and F be spaces with order unit 1E and 1F , correspondingly, and H some family of weakly additive,order-

preserving operators T : E → F . Taking account [8], we called a family H uniform continuous, if for every neigh-
bourhood of zero V in F there exists neighbourhood U of zero in E such that T (U)⊂V for any T ∈H . If the family
H consists of only one weakly additive, order-preserving operator T , then the family H is uniform continuous, since
is continuous T , and H uniform bounded from on bounded T . Next statement shows that every uniform continuous
family weakly additive, order-preserving operators on spaces with order unit is uniformly bounded.

Theorem 3. Let E and F be spaces with order unit, H is a uniformly continuous family of weakly additive, order-
preserving operators T : E→ F , and A be bounded subset on E. Then on F exits such a bounded set B, that T (A)⊂ B
for every T ∈H .

Proof. We put B = ∪
T∈H

T (A). Since the family H is uniformly continuous, then for each neighbourhoods V =

V (0F ,ε) at zero F there exits a neighbourhood U =U(0E ,δ ) at zero E , that T (U)⊂V for every T ∈H . Due to the
bounding of the set A on E we have A⊂ tU for enough large t ∈ R+. Clear, that T (A)⊂ T (tU).

Let x ∈ tU . Then

‖x‖< tδ ,

−tδ1E < x < tδ1E .

From order-proserving and weakly additivity of T we have

−tδT (1E)< T (x)< tδT (1E),

‖T (x)‖< tδ‖T (1E),

i. e.

‖1
t

T (x)‖< δ‖T (1E)‖= ‖T (δ1E)‖ ≤ ε.

Therefore, T (tU) ⊂ tV . Thus, T (A) ⊂ tV for all T ∈H . This means that B ⊂ tV , i. e., the set B bounded on F .
Theorem 3 proved.
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The following theorem is a variant of theorem Banach-Steinhaus, for weakly additive, order-preserving operators.
Theorem 4. Let E and F be spaces with order unit, H is some family of weakly additive, order-preserving

operators T : E→ F , and A is the set all such points x ∈ E the orbits

H (x) = {T (x) : T ∈H }

of which are bounded in F . If A is a set of second category, then A = E and the family H is uniformly continuous.
Proof. Let V =V (0F ,ε) and W =V (0F ,ε

′) be such neighbourhoods, that V +V ⊂W , where V is closure of V . We
put B = ∩

T∈H
T−1(V ).

Let x ∈ A. Then for some natural number n we have H (x) ⊂ nV from bounded H (x). Therefore, T (x) ∈ nV , or
x ∈ nT−1(V ) for all T ∈H . This means that x ∈ nB. Thus, A⊂

∞

∪
n=1

nB. Therefore, at least one of the sets nB is set of

second categories, since A is set of second categories, according to the requirement of the theorem. The map x 7→ nx is
a homeomorphism E on itself. Consequently, B is a set of second category on E. From continuously operators T ∈H
it follows that B closed on E. Since Because B is set of second category, then it contains interior points. From the
construction of the set B, can see that the points of the form δ1E is interior points of B for enough small δ ∈ R+. Let
δ1E is such interior point B. Then the set B− δ1E = {x− δ1E : x ∈ B} contains some neighborhood U =U(0E ,δ

′)
of zero, and,

T (U)⊂ T (B−δ1E) = {T (x−δ1E) : x ∈ B}= {T (x)−δT (1E) : x ∈ B}= T (B)−δT (1E)⊂V −V ⊂W

for all T ∈H . This means that H is uniformly continuous. It means that H is uniform bounded by Theorem 3.
Therefore the orbit H (x) is bounded in F for all x ∈ E. Consequently, A = E. Theorem 4 is proved.

Note that if a space with order unit is Banach space respect order norm, then it called complete space with order
unit. Since all Banach space is set of second categories, then from Theorem 4 directly follows

Corollary 2. Let E is a complete space with order unit and F be a space with order unit, H is some family of
weakly additive, order-preserving operators T : E→ F , and at every x ∈ E the set

H (x) = {T (x) : T ∈H }

bounded on F . Then the family H is uniformly continuous.
Since Theorem 3 holds, then the Corollary 2 means, that pointwise bounded any family of weakly additive, order-

preserving operators from complete spaces with order unit on space with order unit attracts uniformly bounded this
family. Let E and F be spaces with order unit, and {Tn} a sequence of weakly additive, order-preserving operators
Tn : E→ F . If there exists a limit lim

n→∞
Tn(x), x ∈ E, then assuming

T (x) = lim
n→∞

Tn(x),x ∈ E. (3)

we have

T (x+λ1E) = lim
n→∞

Tn(x+λ1E) = lim
n→∞

(Tn(x)+λTn(λ1E)) = T (x)+λT (1E)

and, if x≤ y, then

T (x) = lim
n→∞

(Tn(x))≤ lim
n→∞

(Tn(y)) = T (y).

In other words, if there exists a limit of weakly additive, order-preserving operators, then this limit also is weakly
additive, order-preserving. Besides, if to consider Theorems 2 and 3, then we get

Corollary 3. Let E and F be spaces with order unit, and {Tn} a sequence of weakly additive, order-preserving
operators Tn : E → F . If there exists the limit lim

n→∞
Tn(x), x ∈ E, then the operator T : E → F , defined by the formula

(3), also is weakly additive, order-preserving, and therefore, continuous.
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APPLICATION TO THE ALGEBRA OF CONTINUOUS FUNCTIONS

In this part we state some applications of the obtained results to the algebra of all continuous (or bounded) functions
on a compact Hausdorff space.

Note that the algebra C(X) of continuous functions on a compact Hausdorff space X is a space with order unit with
respect to the partial order introduced pointwise, i. e. with respect to such a partial order, according to it for continuous
functions ϕ , ψ ∈C(X) the inequality ϕ ≤ ψ holds if and only if ϕ(x)≤ ψ(x) is true for each x ∈ X .

Obviously, a set

C+(X) = {ϕ ∈C(X) : ϕ ≥ 0X}
is a positive cone in C(X).

Since X is a compact Hausdorff space, any function ϕ ∈C+(X) such that ϕ(x)≥ a > 0 for all x ∈ X , can be chosen
as an order unit. But, for convenience, it is better to take a constant function 1X which accepts the value 1 everywhere
on X as an order unit in C(X).

For a compact Hausdorff space X by B(X) we denote the set of all bounded functions ϕ : X → R. It is clear that
C(X)⊂ B(X). The sum ϕ +ψ of elements from B(X) is defined as

(ϕ +ψ)(x) = ϕ(x)+ψ(x), x ∈ X .

Multiplication of elements of B(X) by a scalar is defined by the rule

(λϕ)(x) = λ (ϕ(x)) , x ∈ X ,

where λ ∈ R and ϕ ∈ B(X). The norm of the function ϕ ∈ B(X) is defined by the formula

‖ϕ‖= sup{|ϕ(x)| : x ∈ X}.
It is easy to check that (B(X),‖ · ‖) is a Banach space. Moreover, B(X) is a space with order unit 1X . Similarly in

the case of spaces with order unit, one can introduce the concepts of weakly additive, order-preserving and normalized
functional on the spaces C(X) of continuous functions and B(X) of bounded functions on X with order unit 1X .

The set of all weakly additive, order-preserving, of normalized functionals T : B(X)→R we denote by OB(X), and
by WB(X) is the set of all weakly additive order-preserving functionals. These sets are endowed with the pointwise
convergence topology. The base of neighborhoods of a functional T ∈WB(X) is formed by sets of the form

〈T ; ϕ1, . . . , ϕn; ε〉= {P ∈ OS(X) : |T (ϕi)−P(ϕi)|< ε, i = 1, . . . , n},

where ϕi ∈ B(X), i = 1, . . . , n, n ∈ N, ε > 0.
Now we are ready to state results following from the results of the Main part.
Theorem 1 implies the following.
Theorem 5. Any weakly additive order-preserving the functional

T : B(X)→ R (T : C(X)→ R)
is continuous.

From Theorem 2 we get the following
Theorem 6. Any weakly additive order-preserving functional

T : B(X)→ R (T : C(X)→ R)
is bounded.

CONCLUSION

In the present paper we proved a weakly additive, order-preserving version of the Banach-Steinhaus theorem on spaces
with order unit. This result improves results in [2, 3, 4, 5, 6, 7, 8]. To establish the main result at first we obtained
that every weakly additive, order-preserving operator between spaces with order unit is automatically continuous and
bounded. Then we showed that for an arbitrary uniformly continuous family H of weakly additive, order-preserving
operators between spaces E and F with order unit, and for each bounded subset A in E there exits a bounded set B in
F such that T (A)⊂ B for every T ∈H .

Finally we bring some applications of the obtained results to the algebra of all continuous (or bounded) functions
on a compact Hausdorff space.
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