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On dynamics of infinite dimensional Volterra QSOs
Eshmetova S.D.,Khakimov O.N.

Abstract. In this paper, we investigate the behavior of infinite-dimensional Volterra quadratic
stochastic operators corresponding to the negative upper triangular skew-symmetric matrix. It is
proved that the trajectory of such operators cannot consist of convergent subsequences. This property
immediately implies non-ergodicity of the operator. Moreover, it is shown that the operator’s
dynamics with respect to pointwise convergence are regular.

Keywords: Volterra stochastic operator; trajectory, omega limiting sets, pointwise convergence.
MSC (2020): 37B25, 37A30, 46N60.

1. Introduction

Quadratic mappings are present in different areas of mathematics and have various applications:
the theory of differential equations, probability theory, the theory of dynamical systems, mathematical
economics, mathematical biology, statistical physics, etc (see [3, 4]).

The discrete dynamical system corresponding to quadratic stochastic operators (abbreviated QSO.)
appeared in the works of Bernstein [2]. It is known [4] that QSOs is usually employed to describe
the time evolution of species in biology. We notice that quadratic dynamical systems are crucial
for analyzing dynamic properties and modeling in fields such as population dynamics [3], economics
[10, 11] and mathematics [3, 4]. In the study of finite dimensional Volterra dynamical systems for a
given biological population, one may pose the simple question: which genotypes will survive, and which
ones will die out? Recall that a lot of papers are devoted to the investigations of finite dimensional
Volterra operators (for more details see [7]).

In recent years, there has been an increased interest in the evolutionary and dynamical aspects of
quadratic dynamical systems within game theory. Hofbauer and Sigmund’s book [3] offers an excellent
introduction to this theory. Akin and Losert have studied zero-sum games and their evolutionary
dynamics within this context. In recent decades in the game theory, evolutionary and dynamical
aspects of quadratic dynamical systems have dramatically increased in popularity [1].

In [9] Nagylaki examined the impact on the dynamics of the Volterra stochastic operators when
the population size is large. This naturally leads our attention to the following problem: what is
the dynamical behavior of Volterra operators on an infinite dimensional simplex? In [5, 6] a certain
construction of infinite dimensional Volterra operators was studied, but the investigation of their
dynamics were left out. In [8] the authors constructed the class of non-ergodic infinite-dimensional
Volterra operators. We recall that the first finite dimensional non-ergodic QSO was constructed by
Zakharevich [12]. The current paper continues the research from reference [8].

2. Preliminaries

In what follows, as usual, `1 denotes the space of all absolutely summable sequences with the

norm ‖x‖1 =
∞∑
k=1

|xk|.

For a given r > 0 we denote

B+
r = {x ∈ `1 : xk ≥ 0 for all k ∈ N, ‖x‖1 ≤ r}

and
Sr = {x ∈ B+

r : ‖x‖1 = r}.
In the sequel, the unit sphere S1 is called an infinite dimensional simplex. Furthermore, for the sake
of simplicity, we write S instead of S1.
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It is known that S = convh(ExtrS), where Extr(S) is the extremal points of S and convh(A) is
the convex hall of a set A. Any extremal point of S has the following form:

ek = (0, . . . , 0, 1︸ ︷︷ ︸
k

, , 0, . . . ), k ∈ N.

Here and henceforth we denote

int(Sr) = {x ∈ Sr : xk > 0, k ∈ N} , ∂Sr = Sr \ int(Sr).

Let {x(n)} be a sequence in `1. In what follows we write x(n) ‖·‖1−→ a instead of ‖x(n) − a‖1 → 0.
Note that for any positive real number r the sets Sr and B+

r are not compact w.r.t. `1-norm.
We notice that in the finite dimensional setting, analogues of these sets are compact, and hence, the
investigation of the dynamics of nonlinear mappings over these kind of sets use well-known methods
and techniques of dynamical systems. In our case, the non compactness (w.r.t. `1-norm) of the set B+

r

complicates our further investigation on dynamics of Volterra operators. Therefore, we need such a
weak topology on `1 so that the set B+

r would be compact with respect to that topology. It is obvious
that one of weak topologies on `1 is the Tychonov topology which generates the pointwise convergence.
We say that a sequence {x(n)} ⊂ `1 converges pointwise to x = (x1, x2, . . . ) ∈ `1 if

lim
n→∞

x
(n)
k = xk for every k ≥ 1.

and write x(n) p.w.−→ x.
We notice that the set `1 is not closed w.r.t. pointwise topology, and its completion is s which is

the space of all sequences. It is known that this topology is metrizable by the following metric:

ρ(a,b) =
∞∑
k=1

2−k
|ak − bk|

1 + |ak − bk|
, a,b ∈ s. (2.1)

Hence, for a given sequence {x(n)} ⊂ s the following statements are equivalent:

(i) x(n) p.w.−→ x;

(ii) x(n) ρ−→ x.

In the sequel, we will show that the unit ball of `1 is compact w.r.t. pointwise convergence, while
whole `1 is not closed in s.

We recall that `∞ is defined to be the space of all bounded sequences endowed with the norm

‖x‖∞ = sup
n
{|xn|}.

By c0 we, as usual, denote the space of all null sequences, which is a closed subspace of `∞.
We notice that B+

1 is sequentially compact w.r.t. the pointwise convergence.

It is clear that x(n) ‖·‖1−→ a implies x(n) p.w.−→ a. A natural question arises: is there any equivalence
criteria for these two types of convergence on some set? Next result gives a positive answer to this
question.

Lemma 2.1. [8] Let {x(n)} be a sequence on Sr. Then the following statements are equivalent:

(i) x(n) ‖·‖1−→ a;

(ii) x(n) p.w.−→ a and a ∈ Sr.
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Recall that a functional ϕ : `1 → R is called pointwise continuous if for any a ∈ `1 and any sequence

{x(n)} ⊂ `1 with x(n) p.w.−→ a one has ϕ(x(n))→ ϕ(a).
Now we provide a criteria for linear functionals to be pointwise continuous.
Given b ∈ `∞, let us define

ϕb(x) =
∞∑
k=1

bkxk, x ∈ `1. (2.2)

Lemma 2.2. [8] Let b ∈ `∞, then the linear functional ϕb is pointwise continuous on B+
1 iff b ∈ c0.

3. Infinite dimensional Volterra QSO

Let V be a mapping on the infinite dimensional simplex S defined by

(V (x))k =
∞∑

i,j=1

pij,kxixj, k = 1, 2, 3, . . . (3.1)

Here, {pij,k} are the hereditary coefficients which satisfy

pij,k ≥ 0, pij,k = pji,k,
∞∑
k=1

pij,k = 1, i, j, k = 1, 2, 3, . . . . (3.2)

It is important to notice that the mapping V is well-defined i.e., V (S) ⊂ S. Such kind of mapping V
is called infinite dimensional quadratic stochastic operator (in short QSO).

Likewise as a finite dimensional case a QSO V : S → S is called Volterra QSO if

pij,k = 0for any (i, j, k) ∈ N3 such that k /∈ {i, j}. (3.3)

It is known [7] that a quadratic stochastic operator V is Volterra QSO if and only if it can be
represented as follows:

(V (x))k = xk

(
1 +

∞∑
i=1

akixi

)
, k ∈ N, (3.4)

where x = (x1, x2, . . . ) ∈ S and

aki = −aik, |aki| ≤ 1 for every k, i ∈ N. (3.5)

By V we denote the set of all Volterra QSOs on infinite dimensional simplex S, and A denotes
the set of all skew-symmetric matrices with (3.5). The representation (3.4) establishes a one-to-one
correspondence f : V → A by f(V ) = (aki). It is clear that f is affine, hence V is convex, and moreover,
this correspondence allows to investigate certain geometric properties of V by means of structure of
the set A (see [6] for more details).

For a given operator V on S, by {V n(x0)}∞n=1 we denote the trajectory of a point x0 ∈ S under V .

By ωV (x0) (respectively, ω
(w)
V (x0)) we denote the set of limit points of {V n(x0)}∞n=1 with respect to

`1-norm (respectively, pointwise convergence).
In what follows, by a fixed point of V we mean a vector x ∈ S such that V (x) = x. By Fix(V ) we

denote the set of all fixed points of V .
Obviously, if ωV (x0) consists of a single point, i.e. ωV (x0) = {x∗}, then the trajectory {V n(x0)}∞n=1

converges to x∗. Moreover, x∗ is a fixed point of V . However, looking ahead, we remark that
convergence of trajectories is not a typical case for the dynamical systems (3.4).

In [8] two subclasses of V have been defined:

V+ = {V ∈ V : f(V ) ∈ A+}, V− = {V ∈ V : f(V ) ∈ A−},

where

A+ = {(aki) ∈ A : aki ≥ 0 for all k < i},

A− = {(aki) ∈ A : aki ≤ 0 for all k < i}.

We notice that V+ ∩ V− = {Id}, here Id stands for the identity operator.



72 Eshmetova S.D., Khakimov O.N.

Definition 3.1. A `1-continuous function ϕ : S → R is called a Lyapunov function for QSO V if the
limit lim

n→∞
ϕ(V n(x)) exists for any initial point x ∈ S.

Obviously, if ϕ is Lyapunov function for QSO V and lim
n→∞

ϕ(V n(x0)) = x∗, then ωV (x0) ⊂ ϕ−1(x∗).

Let us denote
b↓ = (b1, . . . , bn, . . . ), such that b1 ≥ · · · ≥ bn ≥ · · · .

The following result is stated as Corollary 4.5 in [8].

Theorem 3.2. Let V ∈ V− and b↓ ∈ `∞. Then the functional ϕb↓ given by (2.2) on S is a Lyapunov
function for V .

4. The dynamics of Volterra QSO

Let us consider a skew-symmetric matrix A = (aki)k,i∈N such that

− 1 ≤ aki < 0, ∀k < i. (4.1)

Then corresponding Volterra QSO belongs to the class V−.

Lemma 4.1. Let A = (aki)k,i∈N be a skew-symmetric matrix given by (4.1) and V be a Volterra QSO
generated by A. Then Fix(V ) = {ei : i ∈ N}.
Proof. It is obvious that {ei : i ∈ N} ⊂ Fix(V ). Let us take an arbitrary x ∈ S \ {ei : i ∈ N} and
denote i0 = min{i ∈ N : xi 6= 0}. Then we have

(V (x))i0 = xi0

1 +
∑

i∈supp(x)

ai0ixi

 .

Due to ai0i0 = 0 and ai0i < 0 for all i > i0 one gets

(V (x))i0 < xi0 ,

which implies that x /∈ Fix(V ). The lemma is proved. 2

For a given positive integer m we consider the following functional on S

ϕm(x) =
m∑
k=1

xk, ∀x = (x1, x2, . . . ) ∈ S. (4.2)

Due to Theorem 3.2 every ϕm is a Lyapunov function for V .
The following lemma plays a crucial role in our further investigations.

Lemma 4.2. Let m be a positive integer and V be a Volterra QSO with (4.1). Then for any integer
n ≥ 1 one holds

ϕm(V n(x)) < ϕm(V n−1(x)), ∀x ∈ int(S). (4.3)

Proof. Let us pick any x ∈ int(S) and calculate ϕm(V n(x)). By (3.4), (4.2) and keeping in mind
(aki)k,i∈N is skew-symmetric we obtain

ϕm(V n(x)) =
m∑
k=1

(V n(x))k

=
m∑
k=1

(
V n−1(x)

)
k

(
1 +

∑
i 6=k

aki
(
V n−1(x)

)
i

)

= ϕm
(
V n−1(x)

)
+

m∑
k=1

m∑
i=1

aki
(
V n−1(x)

)
k

(
V n−1(x)

)
i

+
m∑
k=1

∑
i>m

aki
(
V n−1(x)

)
k

(
V n−1(x)

)
i

= ϕm
(
V n−1(x)

)
+

m∑
k=1

∑
i>m

aki
(
V n−1(x)

)
k

(
V n−1(x)

)
i
.
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Then by aki < 0, (k < i) we get

m∑
k=1

∑
i>m

aki
(
V n−1(x)

)
k

(
V n−1(x)

)
i
< 0.

Hence, (4.3) holds. The lemma is proved. 2

Proposition 4.3. Let A = (aki)k,i∈N be a skew-symmetric matrix given by (4.1) and V be a Volterra

QSO generated by A. Then |ω(w)
V (x)| = 1 for any x ∈ int(S). Moreover, there exists r ∈ [0; 1) such

that ω
(w)
V (x) ⊂ ∂Sr.

Proof. Let us take an arbitrary x ∈ int(S). Thanks to lemma 4.2 for every m ≥ 1 one can find
αm ∈ [0; 1) such that

αm = lim
n→∞

ϕm(V n(x)).

We notice that {αm} is a decreasing sequence.
Now we show that for every i ∈ N there exists the following limit

lim
n→∞

(V n(x))i.

Keeping in mind (V n(x))m = ϕm(V n(x))− ϕm−1(V n(x)) for every m ≥ 2 we get

lim
n→∞

(V n(x))m = αm − αm−1.

And for m = 1 we use (V n(x))1 = ϕ1(V n(x)). This means that

lim
n→∞

(V n(x))1 = α1.

Thus, we have shown that lim
n→∞

(V n(x))m ≥ 0 for every m ≥ 1. This means that |ω(w)
V (x)| = 1.

Let us suppose that there exists a positive integer i0 such that

lim
n→∞

(V n(x))i0 = r > 0.

Consequently, we have αi0 > 0. Moreover, since αi0 < 1 one gets r < 1. Then from

ϕi0(V n(x))− ϕi0(V n−1(x)) =
i0∑
k=1

∑
i>i0

aki
(
V n−1(x)

)
k

(
V n−1(x)

)
i
.

we immediately find

lim
n→∞

i0∑
k=1

∑
i>i0

aki
(
V n−1(x)

)
k

(
V n−1(x)

)
i

= 0.

Since aki < 0 we conclude that

lim
n→∞

∑
i>i0

(
V n−1(x)

)
k

(
V n−1(x)

)
i

= 0, ∀k ∈ {1, . . . , i0},

which yields that

lim
n→∞

∑
i>i0

(
V n−1(x)

)
i0

(
V n−1(x)

)
i

= 0.

This together with assumption implies that

lim
n→∞

(
V n−1(x)

)
i

= 0, ∀i > i0.

On the other hand, if i0 ≥ 2 then

lim
n→∞

(
V n−1(x)

)
i

= 0, ∀i < i0. (4.4)
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Indeed, from the following equality

(V n(x))i0 − (V n−1(x))i0 = (V n−1(x))i0

i0∑
i=1

ai0i(V
n−1(x))i

+(V n−1(x))i0
∑
i>i0

ai0i(V
n−1(x))i

by lim
n→∞

∑
i>i0

ai0i(V
n−1(x))i = 0 we get

lim
n→∞

i0∑
i=1

ai0i(V
n−1(x))i = 0.

Henceforth, due to ai0i > 0 (i < i0) we obtain (4.4). Thus, we have shown that

V n(x)
p.w.−→ (0, . . . , 0, r︸ ︷︷ ︸

i0

, 0, 0, . . . ),

where 0 ≤ r < x1 + x2 + · · ·+ xi0 . 2

By support of x = (x1, . . . , xn, . . . ) we mean a set supp(x) = {i ∈ N : xi 6= 0}. Then as a corollary
of proposition 4.3 we can formulate the following result.

Corollary 4.4. Let A = (aki)k,i∈N be a skew-symmetric matrix given by (4.1) and V be a Volterra
QSO generated by A. Then for any x ∈ S with |supp(x)| =∞ there exist r ∈ [0; 1) and i0 ∈ supp(x)
such that

lim
n→∞

(V n(x))i =

{
0, if i 6= i0;
r, if i = i0.

Theorem 4.5. Let A = (aki)k,i∈N be a skew-symmetric matrix given by (4.1) and V be a Volterra
QSO generated by A. Then ωV (x) 6= ∅ for initial point x ∈ S iff |supp(x)| <∞.

Proof. Let |supp(x)| < ∞. Then one can find a positive integer i0 such that xi0 > 0 and xi = 0 for
every i > i0. If xi0 = 1 then x = ei0 . And due to ei0 ∈ Fix(V ) we infer that ωV (x) = {ei0}. Now, we
assume that xi0 6= 1. This case is only possible when i0 ≥ 2. Then we have

∑
i<i0

(V n+1(x))i =
∑
i<i0

(V n(x))i +
∞∑
k=i0

∑
i<i0

aik(V
n(x))i(V

n(x))k

=
∑
i<i0

(V n(x))i +
∑
i<i0

aii0(V n(x))i(V
n(x))i0

≤
∑
i<i0

(V n(x))i

(
1 + ai0 − ai0

∑
i<i0

(V n(x))i

)
,

where ai0 = max
i<i0
{aii0}. Hence,

∑
i<i0

(V n+1(x))i ≤
∑
i<i0

xi

n∏
k=0

(
1 + ai0 − ai0

∑
i<i0

(
V k(x)

)
i

)k
.

From the last inequality by
−ai0

(
V k(x)

)
i
< −ai0xi, ∀k ≥ 0,

we obtain ∑
i<i0

(V n+1(x))i ≤
∑
i<i0

xi

(
1 + ai0 − ai0

∑
i<i0

xi

)n+1

.
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Finally, keeping in mind 0 < 1 + ai0 − ai0
∑
i<i0

xi < 1 one has

lim
n→∞

∑
i<i0

(V n(x))i = 0. (4.5)

On the other hand, we get
i0∑
i=1

(V n(x))i = 1, ∀n ≥ 0.

This together with (4.5) yields that lim
n→∞

(V n(x))i0 = 1. So, we conclude that V n(x)
p.w.−→ ei0 . Since,

ei0 ∈ S, thanks to lemma 2.1 one has

V n(x)
‖·‖1−→ ei0 .

Let |supp(x)| =∞. In this case according to Corollary 4.4 we get

V n(x)
p.w.−→ x∗,

where x∗ ∈ Sr for some r ∈ [0; 1). Then since x∗ /∈ S thanks to lemma 2.1 we infer that ωV (x) = ∅.
The theorem is proved. 2
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Abstract. The present paper is devoted to the study of geometric properties of split faces of a unit
ball of neutral SFS-space and to the study of properties of relations in the set of geometric tripotents.
Namely, we give the condition under which the complete orthomodular lattice of geometric tripotents is
a Boolean algebra and prove that the relations ≤r, ≤c are pre-orders in the set of geometric tripotents.
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1. Introduction

The facially symmetric spaces first introduced and studied in [1, 2] by Y.Friedman and B.Russo
provide an appropriate structure that allows us to study the problem of characterizing the unit ball of
a predual space JBW*-triples, describing important properties of the convex set in geometric terms. In
[1, 2, 3, 4], the face structure of the unit ball of a facially symmetric space and its dual space was deeply
analyzed, and basic notions such as orthogonality, projective unit, norm-exposed face, symmetric face,
generalized (or geometric) tripotent, and generalized (or geometric) Pierce projections were defined
using purely geometric terms. In this paper, we will continue to study the geometric properties of
these spaces and the aforementioned notions.

The structure of this paper is as follows. The second section introduces the necessary concepts and
information from the theory of facially symmetric spaces, which are necessary to present the results
of the study. Note that in this paper we use the terminology and notations used in [1, 2, 3, 4, 5].

In [2, Proposition 4.5] it was proved that for any fixed geometric tripotent ω in a neutral strongly
facially symmetric space (SFS-space) Z the set Lω := {v ∈ GU : v ≤ ω}

⋃
{0} is a complete ortho-

modular lattice with smallest element 0, largest element ω and orthomplement v 7→ v⊥ = ω − v ,
where GU is the set of all geometric tripotents of the unit ball of the dual space Z∗. In [8, Definition
3.1] we defined a strongly split face of the unit ball of a neutral strongly facially symmetric space and
proved that if for any u ∈ Lω a symmetric face Fu is a strongly split face, and then Lω is a Boolean
algebra (see in [8, Theorem 3.2]). In the third section, we study geometric properties of split faces of
the unit ball and show that in neutral SFS-space with condition (FE) the notions of split face and
strongly split face coincide. Consequently, we give conditions (in Corollary 3.7) under which a com-
plete orthomodular lattice Lω := {v ∈ GU : v ≤ ω}

⋃
{0} is a Boolean algebra in neutral SFS-space

with condition(FE).
In [5, Section 2.1] the relations, ≤r, ≤c in the set of tripotents of JB∗-triples were defined and it is

shown that they are pre-orders, i.e., they are reflexive, transitive and not antisymmetric. In Section
4, these relations are similarly defined on the set of geometric tripotents GU, in the dual space of
SFS-space and it is shown that they are pre-orders. Moreover, we investigate geometric properties of
these relations necessary for further study of the theory of facially symmetric spaces.

1.1. Preliminaries. Let Z be a real or complex normed space. Elements f, g ∈ Z are called mutually
orthogonal if ‖f + g‖ = ‖f − g‖ = ‖f‖+ ‖g‖ . Mutually orthogonal elements f, g ∈ Z are denoted by
f � g. A norm-exposed face of a unit ball Z1 of space Z is a non-empty set (not coincident with Z1 )
of the form Fx = {f ∈ Z1 : f(x) = 1}, where x ∈ Z∗, ‖x‖ = 1. For subsets S, T of the space Z, S � T
means that f � g for all f ∈ S, g ∈ T . For any subset S ⊂ Z, let S� = {f ∈ Z : f � g, ∀g ∈ S} and
call S� the orthogonal complement to S. An element u ∈ Z∗ is called a projective unit if ‖u‖ = 1 and
〈u, F �u 〉 = 0. This means that a norm-exposed face Fu is ”parallel” to F �u . By F and U we denote the
set of norm-exposed faces of Z1 and projective units in Z∗, respectively. The mapping U � u 7→ Fu ∈ F
is not a bijection (see [1, Example 4]).
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